2D Transition Metal Dichalcogenides‐Based Electrocatalysts for Hydrogen Evolution Reaction

نویسندگان

چکیده

Hydrogen is an efficient, clean, and economical energy source, owing to its huge density. Electrochemical water splitting a potential candidate for inexpensive eco-friendly hydrogen production. Recently, the development of 2D transition metal chalcogenides (TMDs) nanomaterials with variety physicochemical properties has shown their as eminent non-noble metal-based nanoscale electrocatalysts evolution. Nanostructuring such materials induces deep modification functionalities, compared bulk counterparts. High density different types exposed active sites formed, small diffusion paths, which enhances electron transfer in structures, can successfully aid charge collection process electrocatalytic evolution reactions. In this review, key parameters improve catalyst performance TMDs electrochemical reaction (HER) processes are discussed detail most recent developments field summarized, focusing on improvement activity TMDs. This review delivers insight clear understanding HER, suggesting new type efficient HER well other renewable fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction.

In this communication, nickel diselenide (NiSe2) nanoparticles are synthesized by a facile and low-cost hydrothermal method. The synthesis method can be extended to other metal diselenides as well. The electrode made of NiSe2 exhibits superior electrocatalytic activity in the hydrogen evolution reaction (HER). A low Tafel slope of 31.1 mV per decade is achieved for NiSe2, which is comparable to...

متن کامل

Transition Metal-Modified Zirconium Phosphate Electrocatalysts for the Oxygen Evolution Reaction

Zirconium phosphate (ZrP), an inorganic layered nanomaterial, is currently being investigated as a catalyst support for transition metal-based electrocatalysts for the oxygen evolution reaction (OER). Two metal-modified ZrP catalyst systems were synthesized: metal-intercalated ZrP and metal-adsorbed ZrP, each involving Fe(II), Fe(III), Co(II), and Ni(II) cations. Fourier transform infrared spec...

متن کامل

2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation

Photocatalysis have attracted great attention due to their useful applications for sustainable hydrogen evolution and pollutants degradation. Transition metal dichalcogenides (TMDs) such as MoS₂ and WS₂ have exhibited great potential as cocatalysts to increase the photo-activity of some semiconductors. By combination with graphene (GR), enhanced cocatalysts of TMD/GR hybrids could be synthesize...

متن کامل

Transition Metal‐Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction

Developing alternatives to precious Pt for hydrogen production from water splitting is central to the area of renewable energy. This work predicts extremely high catalytic activity of transition metal (Fe, Co, and Ni) promoted two-dimensional MXenes, fully oxidized vanadium carbides (V2CO2), for hydrogen evolution reaction (HER). The first-principle calculations show that the introduction of tr...

متن کامل

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2022

ISSN: ['1616-301X', '1616-3028']

DOI: https://doi.org/10.1002/adfm.202208994